Share   Subscribe to RSS feed

Brian Schiff’s Blog

Injury Prevention, Sports Rehab & Performance Training Expert

Tag: ACL exercises

One of the great things about being a columnist for PFP Magazine is that I often get to test out the latest fitness equipment on the market. While there are certainly some very gimmicky things out there, I have some ‘go to’ selections in my toolbox, such as the BOSU®NexGen™Pro Balance Trainer. It is the latest version of this training tool.

In my clinic, I rehab lots of athletes suffering from gluteus medius weakness, poor pillar stability and decreased hip stability. Many of my clientele are working to make it back from ACL reconstruction. One of my preferred strengthening exercises to target the shoulder, torso and hips is split squats. Once the client masters proper form on the ground, I move to an unstable setting using the BOSU®.

It is essential to challenge athletes to avoid valgus collapse. The BOSU® introduces instability at the ankle forcing the body to adapt during the split squat movement. Avoiding dynamic valgus and trunk dominance during training will help with injury reduction efforts for the client.

In the video below I produced for my PFP online column, you will see how to use this exercise effectively to improve strength, stability and proprioception.

 

Click here to read the entire online column.

Poor landing mechanics are often cited as a predictor of ACL injury risk. In my 20 years as a physical therapist, I have rehabbed many athletes with this injury. I believe that injury prevention, whether to prevent a primary or secondary injury, hinges on the ability to train the body to decelerate and land appropriately. Some athletes simply move better than others. Nonetheless, teaching a soft bent knee landing while minimizing dynamic valgus is essential.

The following video from my online PFP column reveals a foundational exercise that can be used in prevention and rehab alike.

Click here if you want to read about another landing exercise that I utilize in my training and rehab programs.

Unfortunately, I see far too many patients following ACL reconstruction in my sports medicine practice. In any given month, I am rehabbing between 10 and 15 patients who have lost their season to this injury. Most of the time it is a non-contact mechanism of injury, often involving additional trauma to the collateral ligaments, menisci and/or cartilage within the joint.

Throughout my career, I have rehabbed several hundred athletes with ACL tears. It has always been an area of interest and passion for me as well as prevention. Blending my background in performance training with rehab, I have fostered through much trial and adjustment what seems to be a very effective approach to rehab and return to sport.  Rehabbing higher level athletes is much like working on a high performance sports cars.

alt_lead-ferrari_f12tdf_3low

If you own a high performance vehicle, you would prefer to have it serviced at a dealership where the mechanics are experienced working on similar cars, yes? I feel the same care and application is relevant with ACL rehab.  PT that is too aggressive or too conservative can impede progress and negatively impact peak performance.


Continue reading…

Why is it that athletes performing a movement they have done so many times suddenly tear their ACL?  We have been studying ACL injury and prevention for many years now, and despite our best efforts, we have not made marked progress in preventing the number of ACL injuries.  In addition to anatomical variants and perhaps some genetic predisposition, I feel that the earlier push for sports specialization in our society resulting in increased training/competition hours is a major factor.

acl

The term ACL fatigue may or may not be familiar to you.  But in essence, this theory would suggest that after a certain number of impacts/loading, the ACL becomes weakened and less resistant to strain.  You could almost compare this to a pitcher who suffers an injury to his medial collateral ligament with too much throwing.

As someone who is consistently rehabbing athletes with ACL tears and screening athletes to assess injury risk, I am always interested in how we can keep people from suffering such a devastating non-contact injury. A recent article in the American Journal of Sports Medicine sought so assess ACL fatigue failure in relation to limited hip internal rotation with repeated pivot landings.

We already know that hip mobility is often an issue for our athletes.  Researchers at the University of Michigan sought to determine the effect of limited range of femoral internal rotation, sex, femoral-ACL attachment angle, and tibial eminence volume on in vitro ACL fatigue life during repetitive simulated single leg pivot landings.


Continue reading…

I had the pleasure of listening to Darin Padua, PhD, of UNC present some of his latest research on ACL injury prevention last week. He has been doing research for some time. One of his studies (JUMP ACL) in collaboration with the military and several others has looked at prospective data and injury occurrence among college age subjects.

Much of the research to date on injury prevention has been done by Timothy Hewett and his colleagues. It has concluded that drop landing with a valgus collapse (hip abduction/IR with valgus knee moment) is a risk factor for injury. Interstingly enough, despite that knowledge and the proliferation of prevention programs, Darin mentioned that overall these prevention programs have not slowed the rate of ACL tears in the last decade. Why is that?  He also relayed that much of what we know now is based on 15 total cases.

The Jump ACL Study in a nutshell lasted for 5 years at 3 different military academies:

N = 5,700 cadets with no prior ACL surgery

  • Soccer players = 1,690
  • Tested from 2005 to 2008
  • 39% female; 25% NCAA athletes
  • 14,653 person-years of follow-up

N = 113 incident ACL injuries

  • Soccer players = 29
  • Mean time from testing to injury = 3.1 yrs
  • N = 92 one ACL injury; N = 11 two ACL injuries

Some data (will be published) he discussed based on his findings revealed the following about high risk profiles for ACL injury:

  • Hip flexion > 40 degrees at landing = 1.76x increased risk
  • Hip adduction plus knee valgus = 3x increased risk
  • Hip adduction plus knee varus = 27x increased risk

He also mentioned that the high risk profile does not correspond to the ACL injury event profile of:

  • Hip abduction
  • Lateral trunk flexion
  • Knee valgus collapse
  • Small knee flexion
  • Tibial ER/IR

In the end, he suggests we need to better understand who to target (high risk profile clients) and what to modify (injury event profile) so we can better customize injury prevention programs that optimize proper movement and meet the needs of each individual athlete.  He reminded us that using the uninjured side for comparison is insufficient as faulty movement patterns already likely existed contributing to the first ACL injury.

So, assessing movement continuously and striving for excellent movement quality is a MUST if we are going to both prevent initial ACL injuries and reduce the re-tear rates for our athletes we send back to play.  He reports that those at increased risk simply have bad biomechanics.  His message provides more weight to having an advanced algorithm to identify asymmetry, poor motor control and flawed movement patterns in order to effectively prescribe interventions to address these things.

At UNC they use a PRIME assessment.  I am excited to learn more about it and have referred one of my female higher level soccer players to their lab for assessment as I look at this return to play decision with her now that she is just past 7 months post-op.   I think the hip/core obviously play an important role as I see so much deficiency in my female patients recovering from injury.

Clearly his findings with hip adduction and varus as a big risk factor seem to indicate it could be a top down kinetic chain breakdown as well upon impact based on the risk profile.  Pelvic stability or the lack thereof seems to be significant, only NOT in the same manner we thought about it before based on previous research available.  Stay tuned, as we have lots more to learn about ACL injuries and how best to tailor our prevention efforts.