Share   Subscribe to RSS feed

Brian Schiff’s Blog

Injury Prevention, Sports Rehab & Performance Training Expert

Tag: core training

Improving lateral chain strength is always a priority when training or rehabbing athletes. Improving anti-rotation stability is particularly important for injury prevention and dissipation of forces in the transverse plane. Whether working with a post-op ACL client or training an overhead athlete, I am always seeking ways to increase torso/pillar stability to increase efficiency of movement and reduce injury risk.

This video below from my Functionally Fit series for PFP Magazine will demonstrate a great exercise do accomplish these training goals.

Emphasis should always be placed on maintaining alignment. Do not progress the load too quickly, and be cautious if using the fully extended down arm position if clients have a history of shoulder instability or active shoulder pathology as this places more stress on the glenohumeral joint. Below are some progressions and regressions as well:

Regressions

1. Decrease the hold time as needed to maintain form and alignment
2. Allow the kettlebell to rest against the right dorsal wrist/forearm
3. Stack the top foot in front of the other foot as opposed to stacking them on top of one another to increase stability
4. Bend the knees to 90 degrees to reduce the body’s lever arm

Progressions

1. Increase the weight of the kettlebell and/or increase hold time
2. Lift the top leg away from the down leg
3. Add light perturbations to the top arm during the exercise to disrupt balance and challenge stability
4. Perform the exercise with the down arm fully extended

Increasing shoulder, torso and hip strength and stability is a common training goal for athletes involved in sport.  Facilitating hip disassociation and kinetic chain linking with exercise is always a plus.  I like to use a diagonal mountain climber with hip extension to accomplish these objectives. More specifically, I utilize this exercise with my overhead athletes and anyone involved in cutting, pivoting and rotational sports.

Begin in a tall plank position.  The hands should be beneath the shoulders with the feet on the floor and shoulder width apart.  Slowly bring the left knee/hip under the body and toward the right elbow.  Pause at the end point prior to losing form or control.

Next, return the left leg toward the start position and up into full hip extension in one continuous movement.  Pause at the top end of available hip extension and repeat the cycle for 10 repetitions or time on the same leg.  Alternate legs and perform 2-3 sets on each side.

Sufficient upper body strength and core/hip stability in a 3 point position is necessary to perform the exercise correctly.  At no time should the foot of the moving leg touch the floor or be used to balance the body.  As far as a pace, I feel using a 1/1/1/1 cadence works best.

This exercise is an excellent way to promote shoulder, core and hip stability while facilitating hip disassociation as well.  Driving the hip back up into extension will activate the gluteals and simultaneously force the stable (fixed) hip to stabilize the pelvis and counterbalance the movement pattern. In addition, the client will have to effectively activate the hip and abdominal musculature throughout to avoid unwanted pelvic tilt/rotation during the movement.

Click here to view the full video of this exercise I did for my ‘Functionally Fit’ column for PFP Magazine.

I like to include exercises on this blog that are useful for rehab and fitness professionals as well as fitness enthusiasts who visit. This is a cool exercise that a colleague taught me.  I also recently shared this as part of my ‘Functionally Fit’ column for PFP Magazine.  It works great when doing partner workouts or if coaching a client.  We used it during our off season training for the Carolina Hurricanes and it is much harder than it looks on the surface.

Training clients to maintain core stiffness in athletic functional positions will improve performance and reduce injury risks for the spine and lower extremities. This exercise is an effective way to address postural stability, increase core strength and enhance kinetic chain proprioception

atlas-split-squats

Execution

Begin in a split squat position holding a stability ball overhead. The client maintains an isometric split squat while the coach/trainer provides directional perturbations in an attempt to disrupt balance and stability.

You may opt for several quick rhythmic perturbations or elect to use more sustained pushes (1-2 seconds in each direction) to challenge the client. Allow the client to reset to the desired position if he/she does lose balance in order to facilitate optimal motor patterning. Perform 30 seconds with the left leg forward, rest 30 seconds and then repeat with the right leg forward. Complete two sets on each side.

Be sure to observe asymmetries or deviations specific to either side as this will allow for better cuing and reveal energy leaks. Marking the desired distance between the front heel and rear foot toes with tape will ensure consistency for each trial side-to-side.

Application

This exercise is very effective in training kinetic chain stability and proprioception. Holding the ball overhead allows the trainer to challenge clients to resist movement in the sagittal, frontal and transverse planes through upper body driven loads and feedback. Additionally, the client must focus on maintaining an upright posture while the lower body musculature remains engaged.

Regression

For those with difficulty holding the ball overhead, consider holding the ball at shoulder height at first. Keep in mind the perturbations should be graded and not designed to push the client over or completely off balance.
One additional note to consider: you may opt to instruct the client to remain rigid throughout the drill or allow them to be relaxed and then respond with reactive rigidity when the perturbation comes.  Experiment with your clients and programs and see what you think!

I work with lots of patients and clients who consistently demonstrate inadequate hip and core stability.  I see this show up routinely as asymmetrical 1’s for the trunk stability push-up, in-line lunge, hurdle step and rotary stability movements on the FMS. Unfortunately, this has been a recurring them in many of my females recovering from ACL reconstruction as well as runners with persistent pain/dysfunction in one lower extremity.

I am always looking for better ways to train the body in whole movement patterns as well as functional positions.  One of my preferred positions is to test and challenge my clients in a split squat position.  I begin with an isometric split squat cueing proper alignment and muscle activation.  As clients master isometric postural control, I will allow them to add an isotonic movement by squatting in the position.

As they progress, I will add in perturbations to stimulate changes or challenges to their center of gravity.  Often, you will see them struggle much more on the involved side.  But to be honest, I find most people have an incredibly hard time maintaining proper alignment for long without cheating or falling forward or to the side.  Allowing clients to lose form is okay provided they are cued to fix their alignment or they naturally self correct.

An additional wrinkle I throw in for this training is using the BOSU Balance Trainer.  Below is a video that shows how I use this progressing from shin down to just the toes as a support on the trail leg.  The second version will burn up your clients’ thighs and quickly become one of their least favorite exercises.  The great thing is that you do not have to offer much resistance to create a significant perturbation.

For more detail on this exercise and application, click here to read my PFP column featuring it this week.

six-pack-shortcuts-kettlebell-cardio-routines

Kettlebells are very popular training tools these days.  I find them useful in many ways - improving grip strength, core activation, asymmetrical loading, etc.  With that said, I also feel with movement flaws and/or improper technique, they carry an inherent injury risk.

It is interesting to note that some people find swings to be very therapeutic and good for their back, while others who are capable of lifting very high loads with traditional lifts find them to be irritating to the spine.  So why is this?

If you are like me, knowing the “why” or “cause and effect” behind exercise is very important.  I am not one to blindly use an exercise without knowing its intended purpose and then quantifying risk vs. reward and results. So, it was with great interest I read Stuart McGill and Leigh Marshall’s recent article on kettlebell swings, snatches and bottoms-up carries in the NSCA Journal of Strength & Conditioning Research (Jan 2012).

Click here for the abstract.

While the sample size is small, I think the article provides some gems in regard to training given no one has really looked at spine loading during various swings and carries.  The authors used surface EMG to record muscle activation of the back, hip and core muscles throughout the various exercises - swing, swing with Kime (abdominal pulse at top of the swing), swing to snatch, racked carry and bottoms-up carry.

Without going into all the tiny details, I wanted to share what I consider to be some key takeaways for rehab and training:

  • Unlike traditional low back extension exercises such as lifting a bar or squatting exercises, the swing creates a relatively high posterior shear force (namely L4 on L5) in relation to the compressive load - this may explain why some powerlifters have no issues with heavy dead lifts but are bothered by swings
  • Both compressive and shear forces were highest at the beginning of the swing
  • From a compressive standpoint loads with a 16 kg kettlebell (swing) are less than one-half of that of lifting 27 kg on an Olympic bar and these would seemingly pose a low relative injury risk
  • KB swings do appear to require sufficient spine stability in this shear mode to ensure that is is a “safe” exercise selection
  • Those with back pain develop movement flaws and the authors report one of the most common is to move the spine under load instead of the hips - so instead of hip hinging, injured clientele are more apt to shift or bend the spine leading to repetitive and harmful forces
  • A modified approach to swings with careful cueing and progression is suggested for clinicians
  • The bottoms-up carry poses more challenge to the core musculature likely due to requiring more grip strength (thus stiffening the core per McGill in Ultimate Back Fitness & Performance) as well as necessitating more control to carry it, hence making it a good choice for training in terms of activation of these muscles

So, in my mind kettlebell training (like any other form of training) requires proper form, movement assessment and an intimate knowledge of the client’s medical and training history.  In addition to that, we must carefully scrutinize execution of the exercise and deliver appropriate feedback and analysis.

While maximal shear occurs at the bottom, I cannot help but wonder about the potential impact of tight iliopsoas muscles given their unique relationship to the lumbar spine and reverse muscle action.  It would be interesting to know if those with a greater anterior tilt and tightness are more likely to experience higher shear forces or potential back soreness over time.

This brings the discussion back to quality of movement and movement assessment.  In my mind, adequately assessing the hips (flexibility, strength and stability) is also a key variable in determining how best to approach integrating the swings.  As Gray would say, the lumbar spine needs stability while the hips require mobility.

A lack of hip mobility is definitely a relative precaution for swings in my mind.  On top of that, fundamental hip strength/stability and core strength should be evident.  Perhaps even regressing to rudimentary hip thrusts and bridges may be the best place to start for those needing a primer on form and proper movement before moving to a basic swing.

Nonetheless, a big thanks to Stuart McGill and Leigh Marshall for this work and giving us some practical food for thought.  I hope this information helps you as much as it did me.  May your training be safe and effective!