Share   Subscribe to RSS feed

Brian Schiff’s Blog

Injury Prevention, Sports Rehab & Performance Training Expert

Tag: patellofemoral knee pain

I am pleased to announce that my new e-book on overcoming knee injuries and maximizing running performance is now available!  As someone who has run 4 half-marathons, a full marathon and several 5Ks, I know firsthand how frustrating an injury can be. Perhaps worse than the injury itself, is the fear of re-injury when every step brings trepidation in the back of your mind that the same pain could come back at any moment.

ffr_3dicon_transparent

Over the course of my fitness and therapy career, I have worked with hundreds of runners ranging from beginners to competitive runners.  Many have been sidetracked by anterior knee pain and IT Band Syndrome.  While there is no way to prevent all injuries, I have found that learning to assess the body and incorporate corrective strategies to eliminate asymmetries and imbalances along with proper conditioning allows individuals to run faster, longer and relatively injury free.

Up to 50% of all lower extremity injuries with runners involve the knee.  I have been working on a manual that summarizes my approach to injury prevention, rehab and training for runners.  You see, many people are not really fit to run when they start running. If more people knew how to detect potential issues and train adequately to prepare their bodies to run, injury rates would decrease and performance would subsequently increase.

As such, I wrote Fit For Running: Overcome Knee Injuries and Maximize Performance.  This 70 page e-book covers assessment, stretching, strengthening, soft tissue mobilization, plyometric training and injury recovery guidelines.  It focuses on preparing the human body for optimal performance – a manual for physical readiness if you will.  It is perfect for runners of all ages and abilities, running coaches and fitness trainers working with runners.

While my book aims to target knee pain, it really offers considerable knowledge and insight that would help a runner with any overuse injury. Given the proportion of knee injuries, I chose to focus the injury/rehab portion of the manual on this topic.

Click Here to download a free sample and learn more about this great new resource.

Every year I like to look back and reflect on things I have learned, things I have changed my mind about and of course clinical pearls that stand out.  Over the past year, I have been sharpening my IASTM skills, begun to practice dry needling techniques, and scrutinizing my hip and core exercises that I routinely use in rehab.

I look forward to sharing more about my clinical experiences with dry needling in 2014, but I feel the most critical and recurring theme of 2013 has been the overwhelming impact I have seen poor ankle dorsiflexion have on my patients.  I treat scores or runners, triathletes and clients with knee pain.  The most common issues in this group of clientele tends to be IT band friction syndrome or patellofemoral pain.

When I assess this group of patients, I routinely find the following:

  1. Poor dorsiflexion
  2. TFL dominance
  3. Glute weakness

Any time I evaluate a runner, I assess closed chain dorsiflexion (DF) mobility.  This can be assessed in half kneeling on the floor or standing at a wall.  I suggest removing the shoes during the assessment to eliminate any rise from the heel in the shoe that may bias the movement.  In addition, I hold the ankle in subtalar neutral to get a true assessment without allowing pronation.

The image below simply demonstrates the assessment position as well as the corrective exercise that can be used to facilitate better motion.

half-kneeling-ankle-dorsiflexion-assessment-finish

Clients should be able to attain about 5 inches of clearance beyond the toes without lifting the heel or relying on pronation to get there. I routinely see limited mobility, and more importantly almost 100% of the time I find asymmetry on the side of the affected knee.

I recently evaluated a 29 y/o active female client who does Crossfit 3x/week and likes to run.  She has not been running much due to chronic right lateral knee pain and medial calf pain.  Her goal is to get back to running half-marathons.  Upon evaluation, her overhead squat assessment revealed pronation and external rotation bilaterally, right greater then left.  Her standing wall DF assessment revealed nearly a 1 inch deficit on the right side (about 3 inches), while her left side was 4 inches.

Below is how she looked on the treadmill video analysis I performed:

pronation-hip-drop-rear

You can see the highlighted areas in the photo above.  She has a marked amount of pronation in mid stance as well as left pelvic drop due to poor gluteal activation.  The poor hip stability and activation on the right side also plays directly into TFL dominance with the repetitive femoral internal rotation and adducted position of her right hip..

This poor biomechanical chain is set into motion by poor dorsiflexion mobility.  Runners can get away with this for shorter distances (3-4 miles) in many cases, but increased mileage leads to shin splints, calf strains, IT friction syndrome and patellofemroal pain.  You can see how this poor kinetic chain movement leads to ongoing microtrauma and eventually debilitating pain and dysfunction.  No matter how much one rests, going back to higher mileage will yield the same result.

In my client’s case, she also had a trigger point in her medial soleus – another issue connected with the ankle mobility problem. Her primary treatment plan will focus on soft tissue mobilization for the gastroc/soleus complex, TFL/ITB and glutes/piriformis, ankle dorsiflexion mobility exercises, IASTM to her gastroc/soleus/Achilles, single leg balance and strengthening and hip/core activation and stability work.

I am confident all of this will effectively resolve her pain.  However, it all begins with restoring ankle mobility.  They say a picture is worth a thousand words.  I strongly believe the picture I included of my client on the treadmill speaks volumes as to how poor ankle mobility can lead to unwanted compensatory motion, gluteal inhibition and overuse injuries.  The take home message here is be sure to assess ankle mobility in the presence of any lower extremity pain or dysfunction as it is often a critical piece of the puzzle in the face or recurring injury and chronic pain.

It is common knowledge in the medical community that treating patellofemoral joint pain (PFJP) is one of the most frustrating and difficult tasks to complete as there appears to be no standard way to do so.  While clinicians strive to find the right recipe or protocol (I don’t believe there is just one by the way), researchers press on to find more clues.

A new article released in the April 2011 Journal of Orthopaedic & Sports Physical Therapy seeks to bring clarification to a particular exercise pattern commonly used in rehab circles.  The three exercises they looked at were:

  • Forward step-up
  • Lateral step-up
  • Forward step-down

In the study, the authors looked at 20 healthy subjects (ages 18-35 and 10 males/females) performing the separate tasks with motion analysis, EMG and a force plate.  The goal was to quantify patellofemoral joint reaction force (PFJRF) and patellofemoral joint stress (PFJS) during all three exercises with a step height that allowed a standard knee flexion angle of 45 degrees specific to each participant.

Key point:  Previous research has been done to indicate that in a closed chain setting, knee flexion beyond 60 degrees leads to increased patellofemoral joint compression and this may be contraindicated for those with PFJ pain or chondromalacia.  Also keep in mind that most people with PFJ complain of more pain descending stairs than ascending stairs.

patellofemoral-force

In the study, the participants performed 3 trials of 5 repetitions of each exercise at a cadence of 1/0/1 paced with a metronome.  The order of testing was randomized for each person.  The authors used a biomechanical model to quantify PFJRF and PFJS consisting of knee flexion angle, adjusted knee extensor moment, PFJ contact area, quadriceps effective lever arm, and the relationship b/w quadriceps force and PFJRF.

Now on to the results……


Continue reading…

Anterior knee pain, aka chondromalacia, patellofemoral pain (PFP) and patellofemoral pain syndrome (PFPS), may be the most difficult condition to remedy in the clinic or gym.  There is always debate and speculation when it comes to taping, bracing, orthotics and exercise.

In the latest edition of the JOSPT, there was a summary from the findings presented at an international retreat held in the spring of 2009 in Maryland.  The publication covered the keynote addresses and podium presentations.

Before I give you the quick and dirty details, I want to emphasize a key point that was made and one I happen to wholeheartedly agree with.  It is this:

When assessing and evaluating those with PFPS, it is important to recognize that these patients/clients do not necessarily fit under one broad classification system.  The anterior knee pain issue is multi-factorial and not every person has the same issues or abnormalities.  As such, the exercise prescription most likely will need to be tweaked accordingly for best results.

Okay, now on to the highlights that may impact your training/rehab.  Some researchers from Belgium have been conducting prospective studies looking at intrinsic risk factors for developing PFPS.  They looked at physical education students and novice runners.  Major findings are included below:

Study #1

There were 4 variables identified as risk factors:

  • Decreased flexibility of the quadriceps
  • Decreased explosive strength of the quadriceps
  • Altered neuromuscular coordination b/w the vastus lateralis (VL) and vastus medialis oblique (VMO)
  • Hypermobility of the patella

Study #2

  • More laterally directed plantar pressure distribution at initial (foot) contact during walking and more laterally directed rollover are risk factors for developing PFPS

Study #3

  • Unable to link hip muscle strength (or weakness) to increasing risk for PFPS
  • No apparent correlation with frontal plane motion of the knee and hip strength (so hip weakness will not automatically cause knee pain)

Finally, what does this mean for therapists and fitness pros?  It means…….

  1. They should address the 4 intrinsic risk factors by stretching and strengthening the quads, with a particular emphasis on balancing the VMO strength in relation to VL strength.  This is not new information.  Spending time on closed chain terminal range strengthening is important. 
  2. Second, keenly observing a dynamic disturbance in foot alignment at contact is important  for predicting PFPS and will undoubtedly impact dynamic training protocols for the entire kinetic chain. 
  3. Lastly, continue to strengthen the hip even though the final study revealed no apparent link.  However, perhaps focus more on this when there is a definitive weakness side-to-side that has been identified.  So, don’t fall back on the weak gluteus medius by default; rather use dysfunction as a driver for exercise inclusion.

PFPS is and will continue to be a difficult problem to treat and remedy with exercise.  Further research is needed to determine and evaluate more specific gender differences, kinetic chain links, the efficacy of taping/bracing, and the most effective classification and treatment algorithms for those of us in the trenches.  In the meantime, listen to the body and use the best available science and information to move forward with your training. 

Reference: JOSPT March 2010